14 research outputs found

    Denoising of discrete-time chaotic signals using echo state networks

    Full text link
    Noise reduction is a relevant topic when considering the application of chaotic signals in practical problems, such as communication systems or modeling biomedical signals. In this paper an echo state network (ESN) is employed to denoise a discrete-time chaotic signal corrupted by additive white Gaussian noise. The choice for applying ESNs in this context is motivated by their successful exploitation for separation and prediction of chaotic signals. The results show that the processing gain of ESN is higher than that of the Wiener filter, especially when the power spectral density of the chaotic signals is white.Comment: Submitted to Signal Processing - Elsevie

    Spectral Properties of Chaotic Signals Generated by the Bernoulli Map

    Get PDF
    In the last decades, the use of chaotic signals as broadband carriers has been considered in Telecommunications. Despite the relevance of the frequency domain analysis in this field, there are few studies that are concerned with spectral properties of chaotic signals. Bearing this in mind, this paper aims the characterization of the power spectral density (PSD) of chaotic orbits generated by Bernoulli maps. We obtain analytic expressions for autocorrelation sequence, PSD and essential bandwidth for chaotic orbits generated by this map as function of the family parameter and Lyapunov exponent. Moreover, we verify that analytical expressions match numerical results. We conclude that the power of the generated orbits is concentrated in low frequencies for all parameters values. Besides, it is possible to obtain chaotic narrowband signals

    Communication systems using chaotic signals.

    No full text
    Sinais caóticos são determinísticos, aperiódicos e apresentam dependência sensível às condições iniciais. Esta dependência significa que o estado de dois sistemas caóticos idênticos, iniciados com condições cuja diferença seja arbitrariamente pequena estarão distantes no espaço de fase depois de um tempo finito. Estes sinais podem ser interessantes para algumas áreas da Engenharia de Telecomunicações por apresentarem espectro de Fourier plano, dificuldade de previsão e serem facilmente confundíveis com ruído. Devido à sensibilidade às condições iniciais pode parecer que o sincronismo de dois sistemas caóticos seja impossível. Porém, Pecora e Carroll mostraram que este sincronismo é possível desde que os sistemas obedeçam a certas condições necessárias e suficientes. Este resultado deu um grande impulso para a geração de muitos trabalhos sobre sistemas de comunicação com detecção coerente utilizando sinais caóticos. Regra geral, eles apresentam um subsistema transmissor que gera um sinal caótico a partir do sinal de informação a ser transmitido e um subsistema receptor que consegue produzir um sinal sincronizado com o do transmissor e recuperar o sinal de informação. A literatura mostra que estes sistemas funcionam perfeitamente em condições ideais. O objetivo principal deste trabalho é estudar de forma teórica e numerica o critério de sincronismo de Pecora e Carroll e alguns dos sistemas de comunicação utilizando sinais caóticos propostos na literatura, sobretudo o seu desempenho quando há introdução de ruído branco gaussiano na transmissão e o canal é limitado em freqüência, casos pouco estudados. Mais especificamente, são analisados com certo detalhe os sistemas de comunicação analógica propostos por Cuomo e Oppenheim, por Wu e Chua e o sistema digital Chaotic Phase Shift Keying (CPSK) proposto por Ushio. Mostra-se que nas condições não-ideais citadas, esses sistemas têm desempenho muito pobre no que diz respeito à relação sinal-ruído na saída do receptor. Neste trabalho é apresentada uma solução para este problema no caso de transmissão em canal limitado em banda e é analisada uma proposta de melhoria para o caso de ruído no canal. Conclui-se que, apesar de todas as propriedades interessantes do ponto de vista de comunicações que os sinais caóticos possuem, ainda é necessária muita pesquisa e desenvolvimento para que os sistemas com detecção coerente baseados neles possam concorrer, em situações práticas, com os sistemas em uso atualmente.Chaotic signals are deterministic, nonperiodic and exhibit sensitive dependence on initial conditions. This dependence means that the states of two identical chaotic systems started with two conditions whose difference is arbitrarily small will be distant in the phase space after a finite time. These signals may be interesting in some Telecommunication Engineering fields because their Fourier spectrum is plane, they are difficult to predict and they are noise-like. Due to the sensitive dependence on initial conditions, it may seem that the synchronism of two chaotic systems is impossible. However, as Pecora and Carroll have shown, this synchronism is possible if the systems satisfy some necessary and sufficient conditions. This result has inspired the development of many communication systems based on coherent detection of chaotic signals. In general, they are composed of a transmitter subsystem that generates a chaotic signal depending on the information to be transmitted and a receptor subsystem that can generate a chaotic signal synchronized with the one on the transmitter and can recover the information signal. These systems are known to work well under ideal conditions. The main objective of this work is to study, theoretically and numerically, Pecora and Carroll's criterion and some of the communication systems using chaotic signals proposed in the literature, specially their behavior when additive white gaussian noise is added to the transmitted signal and the channel is band-limited. Specifically, the analog communication systems proposed by Cuomo and Oppenheim, by Wu and Chua and the Chaotic Phase Shift Keying (CPSK) system proposed by Ushio are analyzed in some detail. We show that when the mentioned non-ideal conditions are present the above systems have poor performance when considering the signal-to-noise ratio at the output of the receiver. In this work a solution is presented for the case of transmission over a bandlimited channel and a method for improving the results in the case of noisy channels is analyzed. We conclude that, regardless all the potential properties chaotic signals may have for communication applications, research and development are still necessary so that systems based on them can surpass in practical situations the usual systems used nowadays

    Contributions of the estimation theory to digital modulations that use chaotic signals.

    No full text
    Neste trabalho investiga-se o emprego de técnicas de estimação em sistemas de modulação digital que utilizam sinais caóticos. Inicialmente, aspectos básicos das teorias de sistemas não-lineares e de modulações digitais são revisitados seguidos de técnicas recentemente propostas de modulações digitais caóticas com receptores por correlação coerente, não-coerente e diferencial: o CSK (Chaos Shift Keying), o DCSK (Differential Chaos Shift Keying) e algumas de suas variantes, em especial o FM-DCSK (Frequency Modulated DCSK). Nessa descrição, utiliza-se a notação de equivalente passa-baixas de tempo discreto para facilitar a comparação com modulações digitais convencionais. Deduz-se o limite de Cramér-Rao para a estimação da condição inicial de órbitas caóticas em função de propriedades estatísticas do mapa que as gerou e descrevem-se dois estimadores para elas: o MLE (Maximum Likelihood Estimator) que se aplica a mapas com densidade invariante uniforme e o algoritmo de Viterbi para o qual se apresenta uma generalização a fim de aplicá-lo a uma classe maior de mapas. Por apresentar ganho de estimação maior na faixa de relação sinal-ruído de interesse, este último é utilizado em propostas de sistemas de modulação digital que utilizam estimação de órbitas para detectar o símbolo enviado: o ML-CSK (Maximum Likelihood CSK) modificado para poder usar mapas com densidade invariante não-uniforme, empregando um ou dois mapas e o ML-DCSK (Maximum Likelihood DCSK). Por simulação, avaliou-se o desempenho em termos de taxa de erro desses sistemas sob ruído branco aditivo gaussiano.In this work, we investigate the use of estimation techniques to digital modulation systems that use chaotic signals. Initially, basic aspects of nonlinear systems and digital modulation theory are reviewed followed by currently proposed techniques of chaotic digital modulation with coherent, noncoherent and differential correlation receivers: CSK (Chaos Shift Keying), DCSK (Differential Chaos Shift Keying) and some of its variants in special FM-DCSK (Frequency Modulated DCSK). These systems are described using a discrete-time lowpass equivalent model to facilitate comparison with conventional digital modulation systems. We derive Cramér-Rao lower bounds for the estimation of the initial condition of chaotic orbits as a function of the statistical properties of the chaos generating map and describe two chaotic orbits estimators: the MLE (Maximum Likelihood Estimator) that applies only to maps with uniform invariant density and the Viterbi algorithm for which a generalization is presented that allows its application to a broader class of maps. Because of the larger estimation gains attained in the signal-to-noise ratio range of interest, the latter is used in proposed digital modulation systems that use orbit estimation to detect the transmitted symbol: ML-CSK (Maximum Likelihood CSK) modified to allow maps with nonuniform invariant density using one map or two maps and ML-DCSK (Maximum Likelihood DCSK). The performance of these systems in terms of symbol error rate is accessed via simulation under additive white gaussian noise perturbations

    Communication systems using chaotic signals.

    No full text
    Sinais caóticos são determinísticos, aperiódicos e apresentam dependência sensível às condições iniciais. Esta dependência significa que o estado de dois sistemas caóticos idênticos, iniciados com condições cuja diferença seja arbitrariamente pequena estarão distantes no espaço de fase depois de um tempo finito. Estes sinais podem ser interessantes para algumas áreas da Engenharia de Telecomunicações por apresentarem espectro de Fourier plano, dificuldade de previsão e serem facilmente confundíveis com ruído. Devido à sensibilidade às condições iniciais pode parecer que o sincronismo de dois sistemas caóticos seja impossível. Porém, Pecora e Carroll mostraram que este sincronismo é possível desde que os sistemas obedeçam a certas condições necessárias e suficientes. Este resultado deu um grande impulso para a geração de muitos trabalhos sobre sistemas de comunicação com detecção coerente utilizando sinais caóticos. Regra geral, eles apresentam um subsistema transmissor que gera um sinal caótico a partir do sinal de informação a ser transmitido e um subsistema receptor que consegue produzir um sinal sincronizado com o do transmissor e recuperar o sinal de informação. A literatura mostra que estes sistemas funcionam perfeitamente em condições ideais. O objetivo principal deste trabalho é estudar de forma teórica e numerica o critério de sincronismo de Pecora e Carroll e alguns dos sistemas de comunicação utilizando sinais caóticos propostos na literatura, sobretudo o seu desempenho quando há introdução de ruído branco gaussiano na transmissão e o canal é limitado em freqüência, casos pouco estudados. Mais especificamente, são analisados com certo detalhe os sistemas de comunicação analógica propostos por Cuomo e Oppenheim, por Wu e Chua e o sistema digital Chaotic Phase Shift Keying (CPSK) proposto por Ushio. Mostra-se que nas condições não-ideais citadas, esses sistemas têm desempenho muito pobre no que diz respeito à relação sinal-ruído na saída do receptor. Neste trabalho é apresentada uma solução para este problema no caso de transmissão em canal limitado em banda e é analisada uma proposta de melhoria para o caso de ruído no canal. Conclui-se que, apesar de todas as propriedades interessantes do ponto de vista de comunicações que os sinais caóticos possuem, ainda é necessária muita pesquisa e desenvolvimento para que os sistemas com detecção coerente baseados neles possam concorrer, em situações práticas, com os sistemas em uso atualmente.Chaotic signals are deterministic, nonperiodic and exhibit sensitive dependence on initial conditions. This dependence means that the states of two identical chaotic systems started with two conditions whose difference is arbitrarily small will be distant in the phase space after a finite time. These signals may be interesting in some Telecommunication Engineering fields because their Fourier spectrum is plane, they are difficult to predict and they are noise-like. Due to the sensitive dependence on initial conditions, it may seem that the synchronism of two chaotic systems is impossible. However, as Pecora and Carroll have shown, this synchronism is possible if the systems satisfy some necessary and sufficient conditions. This result has inspired the development of many communication systems based on coherent detection of chaotic signals. In general, they are composed of a transmitter subsystem that generates a chaotic signal depending on the information to be transmitted and a receptor subsystem that can generate a chaotic signal synchronized with the one on the transmitter and can recover the information signal. These systems are known to work well under ideal conditions. The main objective of this work is to study, theoretically and numerically, Pecora and Carroll's criterion and some of the communication systems using chaotic signals proposed in the literature, specially their behavior when additive white gaussian noise is added to the transmitted signal and the channel is band-limited. Specifically, the analog communication systems proposed by Cuomo and Oppenheim, by Wu and Chua and the Chaotic Phase Shift Keying (CPSK) system proposed by Ushio are analyzed in some detail. We show that when the mentioned non-ideal conditions are present the above systems have poor performance when considering the signal-to-noise ratio at the output of the receiver. In this work a solution is presented for the case of transmission over a bandlimited channel and a method for improving the results in the case of noisy channels is analyzed. We conclude that, regardless all the potential properties chaotic signals may have for communication applications, research and development are still necessary so that systems based on them can surpass in practical situations the usual systems used nowadays

    Spectral properties of chaotic signals with applications in communications

    No full text
    This paper investigates the characteristics of the Power Spectral Density (PSD) of chaotic signals generated by skew tent maps. The influence of the Lyapunov exponent on the autocorrelation sequence and on the PSD is evaluated via computational simulations. We conclude that the essential bandwidth of these signals is strongly related to this exponent and they can be low-pass or high-pass depending on the family`s parameter. This way, the PSD of a chaotic signal is a function of the generating map although this is not a one-to-one relationship. (C) 2009 Elsevier Ltd. All rights reserved

    Synchronization of Discrete-Time Chaotic Systems in Bandlimited Channels

    No full text
    Over the last couple of decades, many methods for synchronizing chaotic systems have been proposed with communications applications in view. Yet their performance has proved disappointing in face of the nonideal character of usual channels linking transmitter and receiver, that is, due to both noise and signal propagation distortion. Here we consider a discrete-time master-slave system that synchronizes despite channel bandwidth limitations and an allied communication system. Synchronization is achieved introducing a digital filter that limits the spectral content of the feedback loop responsible for producing the transmitted signal

    Spectral properties of chaotic signals generated by the skew tent map

    No full text
    Chaotic signals have been considered potentially attractive in many signal processing applications ranging from wideband communication systems to cryptography and watermarking. Besides, some devices as nonlinear adaptive filters and phase-locked loops can present chaotic behavior. In this paper, we derive analytical expressions for the autocorrelation sequence, power spectral density and essential bandwidth of chaotic signals generated by the skew tent map. From these results, we suggest possible applications in communication systems. (C) 2009 Elsevier B.V. All rights reserved.MackpesquisaCAPESCNP
    corecore